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a b s t r a c t

In this paper, a two-loop implicit sparse matrix numerical integration (TLISMNI)

procedure for the solution of constrained rigid and flexible multibody system

differential and algebraic equations is proposed. The proposed method ensures that

the kinematic constraint equations are satisfied at the position, velocity and acceleration

levels. In this method, a sparse Lagrangian augmented form of the equations of motion

that ensures that the constraints are satisfied at the acceleration level is first used to

solve for all the accelerations and Lagrange multipliers. The independent coordinates

and velocities are then identified and integrated using HTT or Newmark formulas,

expressed in this paper in terms of the independent accelerations only. The constraint

equations at the position level are then used within an iterative Newton–Raphson

procedure to determine the dependent coordinates. The dependent velocities are

determined by solving a linear system of algebraic equations. In order to effectively

exploit efficient sparse matrix techniques and have minimum storage requirements, a

two-loop iterative method is proposed. Equally important, the proposed method avoids

the use of numerical differentiation which is commonly associated with the use of

implicit integration methods in multibody system algorithms. Numerical examples are

presented in order to demonstrate the use of the new integration procedure.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Sparse matrix techniques [1] are an integral part of the multibody system computational algorithms which are designed
to solve a system of differential and algebraic equations (DAEs) [2]. The differential equations govern the dynamic motion
of the system, while the kinematic constraint equations describe the conditions of connectivity between the bodies as well
as specified motion trajectories. Mechanical joints, which are used to connect the bodies, eliminate some of the system
degrees of freedom. In general, each of these joints is used to connect no more than two bodies, and therefore, the joint
kinematic constraints are only function of the coordinates of the two bodies connected by this joint. By utilizing this fact,
one can obtain a sparse matrix structure of the dynamic equations which can be efficiently solved, in the case of non-stiff
system, using explicit numerical integration methods and sparse matrix techniques.

Sparse matrix techniques, on the other hand, are not fully utilized when implicit numerical integration methods are
used. In the case of flexible multibody systems with very stiff components, the use of implicit numerical integration
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methods becomes necessary. New large deformation flexible multibody approaches, such as the finite element absolute
nodal coordinate formulation (ANCF), lead to a constant mass matrix [3]. By using Cholesky coordinates, one obtains a
generalized identity inertia matrix, leading to an optimum sparse matrix structure of the equations of motion. For large
systems, it is necessary to preserve this optimum sparse matrix structure in order to obtain an efficient solution. It is the
purpose of this investigation to introduce a new implicit sparse matrix integration method for large scale multibody system
applications. The proposed method ensures that the kinematic constraint equations are satisfied at the position, velocity
and acceleration levels. The method requires minimum storage and does not require the use of numerical differentiation
which characterizes many of the existing implicit integration methods when used in multibody system algorithms. In the
proposed method, the Lagrangian augmented form of the equations of motion, which has a sparse matrix structure, is
solved for all the accelerations and Lagrange multipliers. The independent accelerations can be identified and integrated
using HHT [4], Newmark formulas [5] or other implicit integration methods to determine the independent coordinates and
velocities. Dependent coordinates and velocities can be determined by solving the kinematic constraint equations at the
position and velocity levels, respectively. The proposed sparse matrix implicit procedure is based on a two-loop iteration
procedure. One iteration loop is associated with the solution of linear equations for the accelerations and Lagrange
multipliers as well as the velocities, while the second iteration loop is based on a Newton–Raphson algorithm and is
associated with the solution of the nonlinear constraint equations for the coordinates. The basic equations used in this
implicit procedure which avoids the numerical differentiation are the same as the equations used in some of the existing
explicit procedures [6,7]. Therefore, some of the existing explicit procedures can be easily modified to allow for the implicit
solution of the equations of motion in the case of large scale stiff systems.

2. Constrained multibody system equations

The constrained multibody system dynamics is governed by the following differential and algebraic equations:

M €qþ CT
qk ¼ Q , (1)

and

Cðq; tÞ ¼ 0. (2)

In these equations, M is the system mass matrix, q is the vector of the system coordinates, k is the vector of Lagrange
multipliers, Q is the vector of all forces including external, elastic, Coriolis and centrifugal forces, C is the vector of the
constraint functions, t is time, and Cq is the Jacobian matrix of the kinematic constraint equations. In the case of flexible
bodies, the vector of coordinates q includes the coordinates qr that describe the reference motion and the elastic
coordinates qf that describe the deformation of the bodies. The elastic coordinates can be the modal coordinates used in the
small deformation floating frame of reference formulation or the absolute nodal coordinates used in the case of large
deformations [3].

Differentiating Eq. (2) with respect to time once and twice, one obtains the following two sets of equations that define
the constraints at the velocity and acceleration levels:

Cq _q ¼ �Ct , (3)

Cq €q ¼ Q d, (4)

where Ct is the partial derivative of the constraint equations with respect to time, and Qd is a quadratic velocity vector that
results from the differentiation of the constraint equations twice with respect to time [3].

It is important in the sparse matrix implicit procedure proposed in this investigation to note that Eq. (2) is a nonlinear
function of the coordinates, while Eqs. (3) and (4) are linear functions of the velocities and accelerations, respectively.
Furthermore, Eq. (1) is linear in the accelerations and Lagrange multipliers. These observations will be utilized in the sparse
matrix implicit procedure proposed in this paper.

3. Basic equations

In the proposed implicit procedure, as in the case of the explicit procedure, Eqs. (1) and (4) are combined to form the
following augmented form of the equations of motion:

M CT
q

Cq 0

" #
€q

k

" #
¼

Q

Q d

" #
. (5)

This equation, which has a sparse matrix structure, is linear in the accelerations and Lagrange multipliers. Therefore, the
solution of this equation for the accelerations and Lagrange multipliers does not require the use of an iterative procedure.
Furthermore, in the case of the absolute nodal coordinate formulation, Cholesky coordinates can be used leading to a
constant identity mass matrix associated with the large deformation Cholesky coordinates. This leads to an optimum
sparse matrix structure that requires minimum storage.
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After solving Eq. (5), the independent accelerations can be identified and integrated using simple HHT, Newmark
formulas or other known integration methods. In this case, the independent velocities and coordinates can be determined
using the following two equations [4]:

ð _qiÞnþ1 ¼ ð _qiÞn þ hðð1� gÞð €qiÞn þ gð €qiÞnþ1Þ, (6)

ðqiÞnþ1 ¼ ðqiÞn þ hð _qiÞn þ
h2

2
ðð1� 2bÞð €qiÞn þ 2bð €qiÞnþ1Þ, (7)

where qi refers to the vector of independent coordinates, subscripts n and n+1 refer, respectively, to solutions at time step n

and n+1; h is the time step, and b and g are assumed parameters [4]. Note that in Eqs. (6) and (7) only the independent
accelerations are integrated to determine the independent coordinates and velocities.

Eqs. (2), (3), (5)–(7) can be combined to obtain a system of nonlinear equations that can be solved iteratively. These
equations are given as follows:

F ¼

F1

F2

F3

F4

F5

2
6666664

3
7777775
¼

ðM €qþ CT
qk�Q Þnþ1

CððqÞnþ1; tnþ1Þ

ðCq _qÞnþ1 þ ðCtÞnþ1

ðCq €qÞnþ1 � ðQ dÞnþ1

ð _qiÞnþ1 � ð _qiÞn � hðð1� gÞð €qiÞn þ gð €qiÞnþ1Þ

ðqiÞnþ1 � ðqiÞn � hð _qiÞn �
h2

2 ðð1� 2bÞð €qiÞn þ 2bð €qiÞnþ1Þ

2
66666666664

3
77777777775
¼ 0. (8)

Since the number of constraint equations is equal to the number of dependent coordinates, the number of equations in the
nonlinear system of Eq. (8) is equal to the number of unknowns €q, k, q, and _q. Therefore, in principle, one can solve this
system iteratively using a Newton–Raphson method at each time step to determine all the unknowns. The solutions of
these nonlinear equations will satisfy the kinematic constraints at the position, velocity and acceleration levels.

Using Eq. (8), however, as the basis for the numerical solution of the multibody system equations has several drawbacks.
First, numerical differentiation of the equations of motion with respect to the coordinates and velocities is necessary in
many multibody system applications. Second, the resulting coefficient matrix used in the Newton–Raphson iterations does
not have an optimum sparse matrix structure as the result of the numerical differentiation. Third Newton–Raphson method
and numerical differentiation can be source of numerical problems in the case of a very large system of equations. In order
to avoid these drawbacks a two-loop implicit sparse matrix numerical integration (TLISMNI) method is proposed in the
following section. By using the TLISMNI method, numerical differentiation can be avoided and optimum sparse matrix
structure that requires minimum storage can be achieved. Furthermore, the basic equations used in the TLISMNI procedure
are the same as the equations used in some existing explicit procedures [3,6,7]. Therefore, these explicit procedures can be
easily modified to provide as an alternate an implicit solution procedure that can be used in the case of large scale stiff
constrained multibody systems.

4. TLISMNI method

As pointed out in the preceding section, an optimum sparse matrix structure that requires minimum storage can be
obtained when Eq. (8) is iteratively solved. In order to obtain this optimum sparse matrix structure, a two-loop iterative
procedure is proposed. All the equations solved in this two-loop procedure are sparse matrices, and therefore, sparse
matrix techniques can be employed. The solution obtained, as previously mentioned, will satisfy the constraint equations
at the position, velocity and acceleration levels. Furthermore, numerical differentiation of the equations of motion can
be avoided.

The two-loop implicit procedure proposed in this study has an iterative outer loop that involves equations which are
linear in the velocities, accelerations, and Lagrange multipliers. Another iterative inner Newton–Raphson loop that involves
the kinematic constraint equations which are nonlinear functions in the coordinates is used. The proposed implicit
procedure requires identifying the system independent accelerations, which are integrated. The dependent coordinates and
velocities are determined by solving the kinematic constraint equations at the position and velocity levels, respectively.

The computational algorithm based on the TLISMNI method can be summarized as follows:
1.
 Assuming that the state of the system is known at time tn, the constraint Jacobian matrix Cq can be evaluated and used
with a Gaussian procedure to determine the independent coordinates of the system qi. Therefore, the total vector of the
system coordinates q can be partitioned to independent and dependent coordinates and can be written as
q ¼ ½qT

i qT
d �

T, where qd is the vector of dependent coordinates. Note that the number of dependent coordinates is
equal to the number of kinematic constraint equations.
2.
 Having identified the independent coordinates at time tn, the outer loop iterations start in order to reach the solution at
time tn+1. To this end, Eq. (5), which has a sparse coefficient matrix, is constructed and solved for all the accelerations
and Lagrange multipliers. At the iteration k, the solution of Eq. (5) defines the accelerations €qk and Lagrange multipliers
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kk. Note that Eq. (5) is linear in the accelerations and Lagrange multipliers, and therefore, its solution does not require
the use of an iterative procedure.
3.
 Using the independent accelerations, the independent velocities and coordinates can be obtained at time tn+1 using the
HHT formulas of Eqs. (6) and (7), respectively, or any other integration formulas.
4.
 Knowing the independent coordinates at time tn+1, the nonlinear kinematic constraint equations can be solved for the
dependent coordinates using an iterative Newton–Raphson procedure. This step defines the inner loop. In order to
exploit sparse matrix techniques, the following system is solved during the Newton–Raphson iterations [6,7, p. 359]:

Cq

Iin

" #
Dq ¼

�C

0

� �
, (9)

where Dq is the vector of Newton differences, and Iin is a matrix that contains zeros and ones, with ones in the columns
associated with the independent coordinates in order to ensure that the independent coordinates remain fixed during
the Newton–Raphson iterations.
5.
 After determining the coordinates, the algorithm exits the inner loop and returns to the outer loop. Using the
coordinates and the independent velocities, the constraint equations at the velocity level can be solved for the
dependent velocities. In order to obtain a sparse matrix structure, the following system of equations is solved for
the velocities:

Cq

Iin

" #
_q ¼

�Ct

0

� �
. (10)

Note that this system is linear in the velocities, and therefore, its solution does not require the use of an iterative
procedure.
6.
 Knowing the coordinates and velocities, Eq. (5) can be constructed again and solved for the accelerations €qkþ1 and
Lagrange multipliers kk+1. If the norms k €qkþ1 � €qkk, and kkkþ1 � kkk are smaller than a specified tolerance, convergence
is achieved, otherwise go to Step 2 for the next iteration of the outer loop.

It is clear that all systems of equations used in this algorithm have sparse coefficient matrices that require minimum
storage. Furthermore, no numerical differentiation of the external or inertia forces with respect to the coordinates and
velocities is required.

5. Implementation issues

There are several implementation issues that need to be considered in order to improve the efficiency and robustness of
the proposed algorithm. These issues are discussed below:
1.
 In most multibody system applications, the locations of the non-zero elements of the mass and constraint Jacobian
matrices do not change. Therefore, these locations can be defined only once in advance of the dynamic simulation. If one
set of independent coordinates is used throughout the simulation, the locations of the non-zero elements of all the
sparse coefficient matrices do not change. In this case, symbolic factorization and scaling of the coefficient matrices are
not necessary at every iteration. In fact, in some applications, the LU factorization can be skipped for several iterations,
and only back substitution is used to solve the sparse matrix equations.
2.
 In the case of the absolute nodal coordinate formulation, an optimum sparse matrix structure that requires minimum
storage can be obtained by using the large displacement Cholesky coordinates. The generalized inertia matrix associated
with the large displacement Cholesky coordinates is the identity matrix. The use of this identity matrix leads to a
significant reduction in the number of non-zero entries of the coefficient matrix of Eq. 5.
3.
 Different numerical integration formulas and methods can be used with the proposed implicit procedure. For example,
numerical damping can be added to the equations of motion as suggested by Hilber, Hughes and Taylor [4]. It is
important, however, to make sure that the numerical damping does not lead to a deterioration of the accuracy of the
solution. One method that can be used to include the effect of numerical damping is to replace Eq. (1) in the algorithm
by the following equation [8,9]:

ðM €qÞnþ1 þ ð1þ aÞðCT
qk�Q Þnþ1 � aðCT

qk�Q Þn ¼ 0, (11)

where a is a selected numerical damping parameter.

4.
 Error check, selection of the time step, and convergence criteria can have a significant effect on the accuracy and

efficiency of the proposed method. The formulas for error check and selection of the time step and the convergence
criteria proposed in [8,9] can be used with the proposed method. The use of these criteria with the implicit integration
method proposed in this study is currently being investigated and the results will be reported in future publications.
5.
 Formulas of Eqs. (6) and (7) are used to integrate the independent accelerations. However, these equations can also be
applied to predict the dependent coordinates before the start of the iterations of the inner loop. These predicted
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coordinates can be used as initial guess for the Newton–Raphson iterations that involve the nonlinear kinematic
constraints. Such a procedure can significantly speed up the convergence.

6. Numerical examples

In order to test the performance of the sparse matrix implicit integration method proposed in this investigation, two
different simple examples are used. The results of the simulation obtained using the proposed method are compared with
the results obtained using the explicit predictor–corrector Adams method [10]. The explicit predictor–corrector Adams
method is used in a numerical algorithm that also ensures that the kinematic constraints are satisfied at the position,
velocity and acceleration levels [3,6].

In the first example, a simulation of rigid pendulum falling under the effect of the gravity force is performed. The
pendulum used in this example is assumed to be initially horizontal and connected to the ground by a spherical joint, as
shown in Fig. 1. The pendulum is assumed to have a length of 0.4 m, cross-sectional area of 0.02�0.02 m2, a density of
7800 kg/m3. The vertical position of the center of gravity of the beam when the two integration methods are used is shown
in Fig. 2. The energy balance of the kinetic and potential energies is shown in Fig. 3. The results presented in this figure,
obtained using the proposed integration method, demonstrate that the solution satisfies the principle of work and energy.

The same example is solved again by assuming that the beam is a flexible body. The beam is assumed to have a modulus
of elasticity 2�107 N/m2, and a Poisson ratio of 0.3. The beam is modeled by using the large displacement absolute nodal
coordinate formulation [11]. The beam elastic forces are formulated using the general continuum mechanics approach [12].
Fig. 4 shows the area ratio of the deformed cross-section relative to the undeformed cross-section at the point on the beam
that is connected by the spherical joint. The results presented in this figure are obtained using the proposed integration
method. Fig. 5 compares the area ratios, as defined by Nonson’s formula, predicted using the proposed integration method
and Adams method. Fig. 6 shows how the mid-point transverse deformation is measured in this investigation, while Fig. 7
compares the transverse deformation results obtained using the two integration methods.

7. Summary

Many of the existing implicit numerical integration procedures designed for multibody system applications require the
use of numerical differentiation in order to construct the coefficient matrix used in the Newton–Raphson iterations.
Gravity force 
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Fig. 1. Pendulum initial configuration.
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Fig. 2. Vertical position of the pendulum center of gravity (–’– proposed method; – m – Adams method).
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Fig. 3. Energy balance of the rigid pendulum (–’– kinetic energy; –K– total energy; – m – potential energy).
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Fig. 4. Area ratio of beam cross-section at the spherical joint obtained using the proposed integration method (–’– 6 elements; – m – 8 elements).
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Fig. 5. Area ratio of beam cross-section at the spherical joint (–’– proposed method; – m – Adams method).
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Furthermore, some of these implicit procedures do not ensure that the constraint equations are satisfied at all levels
(position, velocity, and acceleration). The TLISMNI method proposed in this investigation ensures that the constraint
equations are satisfied at the position, velocity and acceleration levels. Furthermore, the method does not require the use of
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Fig. 6. Mid-point transverse deformation.
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Fig. 7. Mid-point transverse deformation (–’– proposed method; – m – Adams method).
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the numerical differentiation. By using an iterative two-loop procedure, sparse matrix structure is achieved for all the
systems of equations used. This sparse matrix structure requires minimum storage, particularly in problems that involve
very flexible bodies modeled using the absolute nodal coordinate formulation [3]. While the inner loop requires the
solution of a system of nonlinear equations, the outer loop requires the solution of a linear system of algebraic equation.
Numerical results are presented in order to demonstrate the implementation and accuracy of the proposed implicit
integration procedure.
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